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Sixth-order factorization of the evolution operator for time-dependent potentials
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The evolution operator of a quantum system in a time-dependent potential is factorized in unitary exponen-
tial operators at order 6. This expression is derived with the time-ordering method. It is compared with
lower-order factorizations on several simple one-dimensional examples. Better accuracies are reached at sixth
order for a given time step than at lower orders. Due to a significant increase of computation duration per time
step, the sixth-order approximation is mainly useful when high accuracies are required.
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I. INTRODUCTION [12] complemented by consistent quadrature approximations
of integrals. Other factorization schemes exist, which do not
Solving the time-dependent Schrddinger equation is imseparatéH, and V(t) [13].
portant in many subfields of quantum physics. Our group is The aim of the present work is to derive a sixth-order
involved in numerical resolutions of a three-dimensionalalgorithm and to evaluate its interest with respect to the sim-
time-dependent Schrodinger equation for studying thepler second- and fourth-order algorithms. The approach
breakup of one-neutron halo nuclgi]. A halo nucleus is based on the Magnus expansion could only be extended to
interpreted as a normal nucleus surrounded by one or tweixth order for simple form factors of potenti®lt). There-
distant neutrong?2]. Future breakup studies will crucially fore, we turn to the technique proposed by Suzi®iand
depend on improvements of the efficiency of algorithms in-make use of recent results on the factorization of exponential
volving time-dependent potentials. We think that such im-operatorg14]. Sixth-order factorizations, among others, are
provements will also be useful for other atomic or nuclearderived, classified, and discussed in R@df]. The authors
problems involving a time-dependent Schrodinger equatiomlso evaluate the relative efficiencies of time-dependent al-
with three spatial dimensions. gorithms on classical problems. Here, the comparative merits
The time-dependent Hamiltonian is the sum of a time-of different algorithms are evaluated on simple time-

independent paitl,, containing the kinetic energy and a pos- dependent quantum test cases: the harmonic oscillator forced
sible time-independent part of the potential energy, and &y an electric pulse or an oscillating electric field, which are
time-dependent potentid(t). The basic idea of many algo- exactly solvablg16,17, and the Walker-Preston moddig],
rithms is to apply an approximation of the evolution operatorwhich is well documentedi10].
depending on a time steft to a wave function described in In Sec. Il, we recall different unitary approximations of
a representation where the time-dependent potential matrix the evolution operator wher, and V(t) are separated. A
diagonal. This is the case in finite-difference meth@®sbut  sixth-order algorithm is presented in Sec. llI, and tested on
also in the discrete-variable representatiéhor its accurate  simple examples in Sec. IV. Concluding remarks are pre-
subset the Lagrange-mesh methj&il The evolution opera- sented in Sec. V.
tor is approximated as a product of unitary exponential op-
erators depending either dtiy or on V evaluated at some

time. The accuracy of this approximation is expressed as a Il. APPROXIMATIONS UP TO ORDER 4
given orderk corresponding to an error of ord&t“*! per _ _ o
time step. For symmetric factorizations, ordtés even[6,7]. When the potential depends on time, the Hamiltonian can

Most calculations are based on variants of a second-orddre written as
factorization[see Eq(2) below]. The approximate evolution
oper_ator contains one exponential factor involvitg V\(hose H(t) = Ho + (1), (1)
application on the wave function represents the major part of
the computation time. A number of higher-order approxima-
tions have been proposed. The first fourth-order approximawhereH, may contain a time-independent potential tevp
tion has been derived by Bandrauk and Sf&JnSuzuki has  in addition to the kinetic energy. In the following, we only
introduced a general symbolic scheme to deal with the timeassume tha¥/(t) commutes with itself at different times, and
ordered exponential expression of the evolution opel@or  Wwith V,. For a given time stet, we are interested in unitary
Chin and Cherj10], starting from the symbolic representa- factorizations of the evolution operatoi(t+At,t), generally
tion of the evolution operator proposed by Suzuki, deriveddenoted asU in the following, whereH, and V(t) are
several variants of fourth-order factorizations. In Réd], it separated.
was shown that fourth-order approximations can also be ob- Many practical calculations are based on the second-order
tained from the Magnus expansion of the evolution operatofactorization,
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U = g7 (L2AV(trAt-adt) gridtHog i (ANt adt) 4 O(AL3)
(2

with a € [0, 1]. The most interesting cases are 1/2,which
leads to a symmetric expression, aad0, which allows

grouping the first exponential operator with the last factor of

the next iteration.

Following the technique proposed by Suzuki in Réf,
which is described in the next section, Chin and ChEj
have derived the fourth-order approximation,

U = e (UOANV(H+AD o

(1/2) MHogi(2/13 MVo(t+(1/2)At)

X @1 (L2AtHoErI(OAMD 1 O(ALS), 3)
with the gradient ternf19,14

~ d:

Vi) = V(1) - _APVVO T, 4)

wherem is the mass of the particle arid=1/48.
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expected accuracy. In RdfL1], we proposed to approximate
the integralsW; andW, with the Simpson formul#3] as

W (t) = é{va) + 4V<t + %At) +V(t+ At)} +O(AtY

9)

and

1
Wa(t) = ——[V(t) - V(t + At)] + O(At?). 10
H(t) 12At[() ( )]+ O(At) (10
As in Eq.(3), it only requires three evaluations of the poten-
tial. This number can be reduced to 2 with a two-point Gauss
quadrature formul@3],

Omelyan, Mryglod, and Folk have shown that smallerand

errors can be expected at fourth order at the cost of addi-

tional exponential factorl5]. Also with Suzuki’s technique,
they propose in Eqgs.48) and (53) the fourth-order
approximation,

U = e 0oMVo(t+AD griftgHogriv  AtV(t+At-Atg)
@ 1At HogivANV[t+(1/2)Atlgmi Aty Hogmiv 1 AtV(t+Atg)

% @ iBtoHogvoAVo(t) 4 O(At).

(5

The coefficients of this decomposition are

1
Ato=0.192112527 742 946 4t, Aty = JAt-At,

vo=0.058 518 726 134 556 21,
v, =0.285 216 224 068 709 1,v,=1 — vy +v1),

do=0.007 415 743 802 826 3, (6)

d,=0.007 767 172 706 950 9.

It is interesting to see whether the increase of computin
time is compensated by the expected improvement.

In Ref. [11], we have shown that it is possible to derive
approximations at order 4 from the Magnus expang$it?).
As a first step, a factorization is obtained whekgandV are
separated,

U= e—i(1/6)AtW1+iAt2W2e—i(l/2)AtHOe—i(2/3)At\7V1

¢ @i(L/2AtHogi (1/6) AW, ~i AW, 4. O(At9). )
It involves integrals of the potential
t+At 1 i-1
Wi(t) = F“lft dt’(t+ EAt—t’) V(t)dt”  (8)

and a modified integra\?\/1 defined as in Eq4). Then, these

1 3-13 3+13
W (t) = E[V(t + 6\ At) + V(t L2 At)} + O(AtY
(11
3 3-43 3+13
Wh(t) = E[v(r + 6\ At) - V(t + 6\ At)}
+O(AB). (12)

This gain is, however, only apparent when the process is
iterated, since the first exponential in E@) can be grouped
with the last exponential of the next iteration. However, this
variant appears to be slightly more precise in the examples of
Sec. IV.

IlI. AN APPROXIMATION AT ORDER 6

We have tried to generalize the Magnus approach up to
order 6, but we could only achieve it in particular cases.
Some commutators appearing in integrals of the Magnus ex-
pansion, such agHo, V(t’)],[Hg, V(t")]] could not be disen-
tangled in factorized exponentials depending eitheHgror
on V. These terms vanish in the examples considered below,
but do not in more general cases. So, we turned to the Suzuki
approach using time-ordered exponenti§®§ applied by
Chin and Chen at order {L0]. It allows transforming a de-
g?omposition at a given order for time-independent potentials
in a decomposition valid for time-dependent potentials.

Following Ref.[9], the evolution operator can be written
for time-dependent potentials as

U(t + At,t) = e—lAt[H(t)'HD] — e—iAt[(H0+iD)+V(t)], (13)
whereD is the forward time derivative operator
J
D=—. 14
Py (14
This operator possesses the property,
F(1)e*™PG(t) = F(t + AN G(1), (15

i.e., it translates in time the operators located at its left.
Property (15) allows deriving an approximation of the

integrals can be approximated in a way consistent with thevolution operator in the following way. A decomposition of
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exd —-iAt(A+B)] with A=Hy+iD and B=V(t) is chosen at This may raise numerical problems in the first and last time
some order and applied to E@.3). The commutation prop- intervals when there is no obvious way of extrapolating the

erty [Hyp,D]=0 implies potential before the initial time or after the final time. That
. . . decomposition is therefore not competitive with decomposi-

-iA — oA
e 4(Ho"D) = giAHogAt®, (16)  tion (19) and will not be further considered here. In the ex-

Double commutators of typgV(t),[Ho+iD,V(1)]] appear amples below, we however discuss another decomposition at

beyond second order. These commutators are simplified Byrder 6, involving more exponentials but without gradient
erms.

using the commutation properfgt0
g propertLO] The first and last exponentials in Ed.9) can be grouped

[V(t),[D,V(H)]]=0 (17 in the iteration so that the average number of exponentials of
Hy per time step is only five. This number should be com-
pared with the two exponentials in Eq8) and (7) or four
1 exponentials in Eq(5) at fourth order and with the single
[V(D),[Ho, V(D]] = E[VV(t)]Z- (18)  exponential at second order. We associate with these decom-
positions an integen taking the values 5, 2, 4, and 1,
Then, relation(15) is employed. With a fourth-order decom- respectively.
position, this procedure leads to &) [10].
L_et us apply this prlocedure to the optlmal decomposition IV. APPLICATION TO SIMPLE ONE-DIMENSIONAL
at sixth order of exp-iAt(A+B)] presented in Eq(50) of SYSTEMS
Ref. [14]. It is optimal in the sense that the authors of Ref.
[14] have selected it among various possibilities to minimize In order to appreciate the efficiency of the sixth-order

and the gradient expressi¢h9,14

the error. The above procedure leads to algorithm, we compare the different approximati@2 (3),

(5), (7), and(19) on two one-dimensional quantum problems.

U(t+Att) The forced harmonic oscillator can be solved analytically

— - iAloHogivgAVp(t+At-Atg) griAtyHogrivs AtV(E+ At-Aty-Atg) [16,17. The Walker-Preston modgll8] represents a di-

atomic molecule in a time-dependent electric field and has

Xe—imzHoe—iUZAK/Z[H(1/2)At]e—iAtzHOe—iletV<t+At1+AtO) been studied in Ref10]. In a first step, we only compare the
B accuracies of the algorithms. We check that a sixth-order
X @718t HogmivoAtVo(trAlg gmiAloHo 4+ O(AL7), (19) accuracy is really obtained and discuss the improvement

_ with respect to lower orders. In a second step, we address the
with V; defined in Eq(4). The coefficients of this decompo- utility of the algorithms by comparing their efficiencies, i.e.,
sition are by taking account the fact that the computer time involved in

_ a single time step differs at the various orders.
Atp=0.109 705 972 394 868 A&, The one-dimensional time-dependent Hamiltonian reads

= 1 &
At; =0.414 063 226 731 083 At, H=— = 4 Vg0 - H(D)x. (21)
2max
At,= %At— Aty — Aty, The first two terms are interpreted as operdtigr The last

term is the time-dependent potenti4lt). A different separa-
tion is also briefly discussed below. The wave function

vo=0.269 331584 893 530 1, Y(x,t) is represented on a mesh in the spirit of the Lagrange-
mesh[5] or discrete-variabl§4] methods. Following the dis-
v1=1.131 980 348 651 556,v,=1 - 2Avg+vy), cussion in Ref[11], we select a sinc megR0,21], which is
based on equally spaced mesh poitsx, +(j—1)h, where
do=0.003 208 744 099 999 45, X, andh are scaling parameters apdaries from 1 toN. All
potential terms are represented by diagonal matrices evalu-
d,=0.007 348 391 794 869 08. (20)  ated at mesh points. The Hamiltonian operdtgris repre-
sented by matrix elements
Notice that, in quantum-mechanical applications, all coeffi- o
cientsAt; or v; in exponential operators of the chosen decom- =D =) G # ), 27
position need not be positive to ensure a good accuracy. 9 mh 2726 +Vo(x) (i=})), (22)

Decomposition(19) involves six exponentials dfl; and ] i . )
is, in this respect, not the most economical at sixth order ivherei andj vary from 1 toN. The time-dependent potential
Ref. [14]. Indeed factorization45) of that reference leads to 1S represented at the Gauss approximation related with sinc
an approximation of the evolution operator containing onlyfunctions[21] as
four exponentials oH,. However, we have observed that the ) — Y

i . ; Vi () = - xf(t) ;. (23

corresponding algorithm provides results that are less accu-
rate by about two orders of magnitude. Moreover, it involvesThe mesh covers an intervit;, xy] outside of which wave
evaluations of the potential outside the interyalt+At].  functions are negligible. The numb& of mesh points is
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taken large enough so that the results are stabi ig in- 1
creased. The exponentials of the diagonal potential matrices

are very easy to calculate in all cases. The exponentials of

the full Hy matrices are obtained through a diagonalization 102
which must be performed only once, before the iteration
starts. In contrast with the second- and fourth-order algo-

—4
rithms (3) and(7), three such matrices must be stored in the 10
sixth-order algorithm. Another approach, using Padé ap-
proximations, has been tested in R@ft]. It led to a signifi- 10-6
cant loss of accuracy. At sixth order,(8,3) Padé approxi-
mation consistent with the accuracy of the algorithm should v
be used. Since the kinetic-energy matrix is full, it would not 10-8

reduce the computing times.
For the forced oscillatorH, is the harmonic-oscillator
Hamiltonian withm=1 and Vy(x)=(1/2)x%. Its eigenfunc- 10-10
tions are denoted ag,(x) and the corresponding energies as
E,. The general solution of the time-dependent Schrodinger

equation for the initial wave packet(x,0)=¢,(X) att=0 is 107"
given by[16,17
P(X,1) = en[X = Xo(t) Jexipo(t)x]exp 10~ : : :
t 0.001 0.01 0.1 1
X3 = iJ [E,+ Lo(t)]dt ¢, (24) At
0

. i FIG. 1. Accuraciese in different approximations of the time
where xo(t) and po(t) are the classical coordinate and mo- ¢\0|ytion operator as a function of the time stetifor the harmonic

mentum corresponding td with initial conditionsxy(0)=0  qscillator forced by puls€25). Second-order factorizatiai®), open
and py(0)=0, respectively. The Lagrangian-like expressiontriangles. Fourth-order factorizatioig) with Simpson integration,
,Co:(1/2))'((2)—(1/2)xg appears in the phase factor. For thefull triangles; (7) with Gauss integration, full circles(3) full
time-dependent potential, we consider two cases which allowquares; and5) full diamonds. Sixth-order factorizatiori19),
a fully analytical treatment. As in Refl1], we consider a crosses, and gradient-free factorizatigee tex, pluses.
trigonometric pulse. However, for simplicity, we now define

it as Ref. [11], the slope corresponds t&t°, because the average

error per time step is represented. At fourth order, the errors
.1 of the different approximations display a slof&. Approxi-
fi(t) = S|n2§77t, 0<t<2, (25 mation(7) with the Simpson quadratur€8) and(10) is less
accurate than Chin and Chen’s algoritli®) or factorization
i.e., we eliminate the two periods witfi(t)=0 before and (7) with the Gauss quadratur¢$l) and(12), which are al-
after the pulse considered in Refll]. A second time- most equivalent. Algorithnt5) is, however, much more ac-

dependent term is the oscillating field curate. At sixth orde¢crossey the error clearly decreases as
) At® down to the computer accuracy. It is remarkable that
f5(t) = sin wt, (26)  with only two stepgAt=1), the accuracy is better than 0.1%

with the sixth-order approximation. We also made the calcu-
lation at sixth order withH, equal to the kinetic energy
while V(t) is (1/2)x?>-f(t)x. This case is more general be-

with @=0.75. The corresponding explicit expressionsff)
and [§Lo(t")dt’ are given in the Appendix. In both cases, the

system s att=0 in the ground state of the harmonic cause the gradient ternid) still depend onx. The results
oscillator. . , . would display no visible difference with respect to Fig. 1. We

For the pulse, the interval ig-8, +8] with N=50. The 555 test the best gradient-free algoritig®) and (83) of
pulse increases untiF 1 and then decreases urti2, where  Ref [15]. The obtained resuli@luses are slightly less good.
we analyze the accuracy of the final wave function by com-  For the oscillating field, we choose the spatial interval
parison with the exact result. The final error with respect tq—12, +173 with N=75. The natural time unit is the oscilla-
the exact calculation is given by the quadratic-norm distancejon period== 2/ . In this case, we calculate the er(@r)

— || JAPPIOX(+\ _ . jexac on the evolution at=1000r. In Fig. 2, we display results for
& = [y - )| @7 the oscillating potentia{25).
at the end=2 of the pulsg25). In Fig. 1, the final errok is The conclusions are essentially the same as with the
plotted as a function of the time stéy for different factor-  pulse. Chin and Chen’s approximation is more accurate than
izations of the evolution operator. the other fourth-order approximations with the same number

We can distinguish three different behaviors, as expectedf exponentials oHg, but less good than algorith(®). Due
At the second-order approximatiq) with a=1/2 (open to the large number of time steps, fourth-order approxima-
triangley, the error displays a slope typical At? since the tions with time steps around 0.001 present a saturation re-
number of time steps is proportional to At/ In Fig. 2 of  lated to the computer accuracy.
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10_10 . , , , 10—12
0.001 0.01 0.1 1 0.001 0.01 0.1 1
At/T At/T
FIG. 2. Accuracies for the harmonic oscillator forced by os- FIG. 3. Accuraciese for the Walker-Preston model. Second-

cillating field (26). Second-order factorizatio®), open triangles.  order factorization(2), open triangles. Fourth-order factorizations
Fourth-order factorizations?) Wlth Slmpson integration, full tri-  (7) with Simpson integration, full triangle$7) with Gauss integra-
angles;(7) with Gauss integration, full circleg3) full squares; and  tion, full circles;(3) full squares; and5) full diamonds. Sixth-order

(5 full diamonds. Sixth-order factorizatioril9), crosses, and factorization(19), crosses, and gradient-free factorizatisee texy,
gradient-free factorizatiotsee texy, pluses. pluses.

Ho. It seems that it better resists to long-time oscillating
fields than the others. The sixth-order algoritih®) is the
, most accurate for all time steps.
_ 19 _a Since the three examples give consistent information, we
H=- 2max2 +Vo(1 -9+ Axcos o, (28) discuss the algorithm efficiency in the last case only. In order
to compare the computation times of the different approxi-
where m=1745, V,=0.2251, «=1.1741,A=0.011025, and  mations, we must take into account the propagation cost of
»=0.01787[10]. The first two terms represent the standardy)| exponential operators in each factorization. This is esti-
Morse HamiltonianH, and the Ias_t term is the oscillatin.g mated with the following assumption: we neglect the com-
potential V(t). The wave function is represented on a sincpyting time of the exponentials of the diagonal matrices rep-
mesh in the interva[-0.8, +4.24 with N=80. The initial  resenting V(t). This means that the evaluation of this
wave function is chosen to be the ground state of the timepotential at mesh points is considered as negligible. If the
independent Hamiltoniatl,. As in the previous case, the potential evaluations were not negligible, the discussion be-
oscillation period ist=2m/w. The final error at=1000ris  Jow remains valid if the evaluation time of a pair of two
given by successive exponentialsne with V(t) and one withH] is
€= [|yPPPoX () — oY), (29) approxima’gely constant. This cannot strictly be true b_ecause
of the gradient terms. Notice that the present assumptions are
where §~°™(t) is a “converged” wave function obtained at quite different from those for classical cases in R&f], so
sixth order with small time stepgAt<0.015r). Different  that different conclusions can be expected.
approximations of the evolution operator are compared in Let n be the average number of exponentials of fd)

Fig. 3. matrices at each time step defined in Sec. Il. From E2)s.
The same behaviors as in the solvable examples are olg3), (7), (5), and(19), n is equal to 1 at second order, 2 or 4
served. The slopes are about 2 at second ofdpen tri-  at fourth order, and 5 at sixth order. The gradient-free sixth-
angleg, 4 at fourth order(full triangles, full circles, full  order algorithm defined by Eq$82) and (83) of Ref. [15]
squares, full diamonds and 6 at sixth order(crosses, corresponds tm=7. In Fig. 4, the total errof29) after the
pluses. Again, Chin and Chen’s approximation is the bestevolution is plotted as a function dft/nr, i.e., an effective

fourth-order algorithm with only two exponentials involving time stepAt/n in 7 units.

The Walker-Preston modgl8] is defined by Hamiltonian
(22) written as
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L Chin and Chen are the most efficient ones. The sixth-order
algorithms are unfavored by the large number of exponen-
tials in approximate factorizations of the evolution operator.
1072 However, if a high accuracy is required, the presented sixth-
order algorithm(19) becomes the most efficient in our tests
and might remain optimal with respect to upper orders.

1074 The efficiency of the different algorithms depends on a
subtle balance of accuracy and cost. The definition of effi-
ciency depends on the type of calculation and is quite differ-
o 1078 ent for quantal and classical applications. It might also
change in calculations more complex than the simple ex-
amples discussed here. Anyway, it might be interesting to
10-% systematically explore the possible algorithms starting from
the classification in Ref.15].

10719
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pluses.
For the pulse defined in E@R5), the classical coordinate

Among the fourth-order algorithms, the simpler algorithm is given for O<t=2 by

(3) of Chin and Chen becomes competitive with the more 1

complicate algorithm(5). At low accuracy, the sixth-order Xo(t) = 2K (m?cost — cos ) + > (A1)
approximations require more computation time than fourth-

order approximationg3) and (5). But at high accuracy, the with K=1/[4(1-7?)]. The integral of the Lagrangian reads
sixth-order factorizations become faster than all others. How- .

ever, because of its high numbey the gradient-free algo- f Lo(t)dt = - K2<1 + 7
rithm is not competitive. The discussion of the quantum case 0 T
appears to be quite different from the discussion of the clas-

sical case in Ref{15]. — 472sint cos m)

sin 2wt + 7'sin 2
0

1 ot
V. CONCLUSION N K<_Sm t— m2sint - Z) -
T

t

In this work, we present and discuss a sixth-order algo- 8
rithm based on the method proposed by SuZ@kiand on a  For the oscillating field defined in Eq26), the classical
recent factorization of the exponential of a sum of operatorgoordinate is given by
derived in Ref.[14]. Our algorithm of Ref[11] could not,
until now, be extended to sixth order except in the particular (1) =
case where the gradient term is a constant. Anyway, at fourth 1-w?
order, it is less efficient in the studied examples than th
algorithms of Chin and Chefi0] and of Omelyan, Mryglod,
and Folk[15], based on the Suzuki procedure. For all time t
steps, the sixth-order algorithm provides the best accuracy. J

Since our main goal is to find the most efficient algorithm
for solving time-dependent Schrddinger equations, we esti- ) )
mate the relative efficiency of the algorithms by dividing +(0° = Dt - 4o sin ot cost |. (A4)
each time step by a computing-time cost approximated by an
integern. When the required accuracy is not large, fourth-In both cases, the initial conditions axg(0)=0 and p,(0)
order algorithms and in particular, the simple algorithm of=0 and the classical momentum is given fiyt) =X(t).

(A2)

(sin wt— w sint). (A3)

“The integral of the Lagrangian reads

0’ +1

1
Lot")dt' = —2<wzsin 2+ sin 2wt

0 4(1 - 0?

w

056703-6



SIXTH-ORDER FACTORIZATION OF THE EVOLUTION...

[1] P. Capel, D. Baye, and V. S. Melezhik, Phys. Rev.68,
014612(2003.
[2] M. V. Zhukov, B. V. Danilin, D. V. Fedorov, J. M. Bang, |. J.
Thompson, and J. S. Vaagen, Phys. R2g1, 151(1993.
[3] M. C. Abramowitz and I. A. Stegurjandbook of Mathemati-
cal Functions(Dover, New York, 1970
[4] J. C. Light, I. P. Hamilton, and J. V. Lill, J. Chem. Phy&2,
1400(1985.
[5] D. Baye and P.-H. Heenen, J. Phys.1®, 2041(1986.
[6] M. Suzuki, Phys. Lett. A146, 319(1990.
[7] M. Suzuki, J. Math. Phys32, 400(1991).
[8] A. D. Bandrauk and H. Shen, J. Chem. Ph9S, 1185(1993).
[9] M. Suzuki, Proc. Jpn. Acad., Ser. B: Phys. Biol. S689, 161
(1993.
[10] S. A. Chin and C. R. Chen, J. Chem. Phyd7, 1409(2002.
[11] D. Baye, G. Goldstein, and P. Capel, Phys. Lett3A7, 337
(2003.
[12] R. M. Wilcox, J. Math. Phys8, 962 (1967.
[13] S. Blanes and P. C. Moan, J. Comput. Ph¥g0, 205(2001).

PHYSICAL REVIEW E 70, 056703(2004)

[14] I. P. Omelyan, I. M. Mryglod, and R. Folk, Phys. Rev. @5,
026701(2002.

[15] I. P. Omelyan, I. M. Mryglod, and R. Folk, Comput. Phys.
Commun. 151, 272(2003.

[16] K. Husimi, Prog. Theor. Phys9, 381(1953.

[17] E. H. Kerner, Can. J. Phys36, 371(1958.

[18] R. B. Walker and R. K. Preston, J. Chem. Phy¥, 2017
(1977).

[19] M. Suzuki, in Proceedings of the Eighth Workshop on Com-
puter Simulation Studies in Condensed-Matter Physics, Ath-
ens, Georgia, 1995dited by D. P. Landau, K. K. Mon, and
H.-B. Schuttler, Springer Proceedings in Physics Vol. 80
(Springer, Berlin, 1995 p. 169.

[20] C. Schwartz, J. Math. Phy£6, 411(1985.

[21] D. Baye, inProceedings of the XVII RCNP International Sym-
posium on Innovative Computational Methods in Nuclear
Many-Body Problems, Osaka, Japan, 19%dited by H.
Horiuchi, M. Kamimura, H. Toki, Y. Fujiwara, M. Matsuo, and
Y. Sakuragi(World Scientific, Singapore, 1998p. 179.

056703-7



