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The evolution operator of a quantum system in a time-dependent potential is factorized in unitary exponen-
tial operators at order 6. This expression is derived with the time-ordering method. It is compared with
lower-order factorizations on several simple one-dimensional examples. Better accuracies are reached at sixth
order for a given time step than at lower orders. Due to a significant increase of computation duration per time
step, the sixth-order approximation is mainly useful when high accuracies are required.
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I. INTRODUCTION

Solving the time-dependent Schrödinger equation is im-
portant in many subfields of quantum physics. Our group is
involved in numerical resolutions of a three-dimensional
time-dependent Schrödinger equation for studying the
breakup of one-neutron halo nuclei[1]. A halo nucleus is
interpreted as a normal nucleus surrounded by one or two
distant neutrons[2]. Future breakup studies will crucially
depend on improvements of the efficiency of algorithms in-
volving time-dependent potentials. We think that such im-
provements will also be useful for other atomic or nuclear
problems involving a time-dependent Schrödinger equation
with three spatial dimensions.

The time-dependent Hamiltonian is the sum of a time-
independent partH0, containing the kinetic energy and a pos-
sible time-independent part of the potential energy, and a
time-dependent potentialVstd. The basic idea of many algo-
rithms is to apply an approximation of the evolution operator
depending on a time stepDt to a wave function described in
a representation where the time-dependent potential matrix is
diagonal. This is the case in finite-difference methods[3], but
also in the discrete-variable representation[4] or its accurate
subset the Lagrange-mesh method[5]. The evolution opera-
tor is approximated as a product of unitary exponential op-
erators depending either onH0 or on V evaluated at some
time. The accuracy of this approximation is expressed as a
given orderk corresponding to an error of orderDtk+1 per
time step. For symmetric factorizations, orderk is even[6,7].

Most calculations are based on variants of a second-order
factorization[see Eq.(2) below]. The approximate evolution
operator contains one exponential factor involvingH0, whose
application on the wave function represents the major part of
the computation time. A number of higher-order approxima-
tions have been proposed. The first fourth-order approxima-
tion has been derived by Bandrauk and Shen[8]. Suzuki has
introduced a general symbolic scheme to deal with the time-
ordered exponential expression of the evolution operator[9].
Chin and Chen[10], starting from the symbolic representa-
tion of the evolution operator proposed by Suzuki, derived
several variants of fourth-order factorizations. In Ref.[11], it
was shown that fourth-order approximations can also be ob-
tained from the Magnus expansion of the evolution operator

[12] complemented by consistent quadrature approximations
of integrals. Other factorization schemes exist, which do not
separateH0 andVstd [13].

The aim of the present work is to derive a sixth-order
algorithm and to evaluate its interest with respect to the sim-
pler second- and fourth-order algorithms. The approach
based on the Magnus expansion could only be extended to
sixth order for simple form factors of potentialVstd. There-
fore, we turn to the technique proposed by Suzuki[9] and
make use of recent results on the factorization of exponential
operators[14]. Sixth-order factorizations, among others, are
derived, classified, and discussed in Ref.[15]. The authors
also evaluate the relative efficiencies of time-dependent al-
gorithms on classical problems. Here, the comparative merits
of different algorithms are evaluated on simple time-
dependent quantum test cases: the harmonic oscillator forced
by an electric pulse or an oscillating electric field, which are
exactly solvable[16,17], and the Walker-Preston model[18],
which is well documented[10].

In Sec. II, we recall different unitary approximations of
the evolution operator whereH0 and Vstd are separated. A
sixth-order algorithm is presented in Sec. III, and tested on
simple examples in Sec. IV. Concluding remarks are pre-
sented in Sec. V.

II. APPROXIMATIONS UP TO ORDER 4

When the potential depends on time, the Hamiltonian can
be written as

Hstd = H0 + Vstd, s1d

whereH0 may contain a time-independent potential termV0
in addition to the kinetic energyT. In the following, we only
assume thatVstd commutes with itself at different times, and
with V0. For a given time stepDt, we are interested in unitary
factorizations of the evolution operatorUst+Dt ,td, generally
denoted asU in the following, whereH0 and Vstd are
separated.

Many practical calculations are based on the second-order
factorization,
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U = e−is1/2dDtVst+Dt−aDtde−iDtH0e−is1/2dDtVst+aDtd + OsDt3d,

s2d

with aP f0,1g. The most interesting cases area=1/2,which
leads to a symmetric expression, anda=0, which allows
grouping the first exponential operator with the last factor of
the next iteration.

Following the technique proposed by Suzuki in Ref.[9],
which is described in the next section, Chin and Chen[10]
have derived the fourth-order approximation,

U = e−is1/6dDtVst+Dtde−is1/2dDtH0e−is2/3dDtṼ0st+s1/2dDtd

3e−is1/2dDtH0e−is1/6dDtVstd + OsDt5d, s3d

with the gradient term[19,14]

Ṽistd = Vstd −
di

m
Dt2f¹Vstdg2, s4d

wherem is the mass of the particle andd0=1/48.
Omelyan, Mryglod, and Folk have shown that smaller

errors can be expected at fourth order at the cost of addi-
tional exponential factors[15]. Also with Suzuki’s technique,
they propose in Eqs.(48) and (53) the fourth-order
approximation,

U = e−iv0DtṼ0st+Dtde−iDt0H0e−iv1DtVst+Dt−Dt0d

3 e−iDt1H0e−iv2DtṼ2ft+s1/2dDtge−iDt1H0e−iv1DtVst+Dt0d

3 e−iDt0H0e−iv0DtṼ0std + OsDt5d. s5d

The coefficients of this decomposition are

Dt0 = 0.192 112 527 742 946 4Dt, Dt1 =
1

2
Dt − Dt0,

v0 = 0.058 518 726 134 556 21,

v1 = 0.285 216 224 068 709 1,v2 = 1 − 2sv0 + v1d,

d0 = 0.007 415 743 802 826 3, s6d

d2 = 0.007 767 172 706 950 9.

It is interesting to see whether the increase of computing
time is compensated by the expected improvement.

In Ref. [11], we have shown that it is possible to derive
approximations at order 4 from the Magnus expansion[12].
As a first step, a factorization is obtained whereH0 andV are
separated,

U = e−is1/6dDtW1+iDt2W2e−is1/2dDtH0e−is2/3dDtW̃1

3e−is1/2dDtH0e−is1/6dDtW1−iDt2W2 + OsDt5d. s7d

It involves integrals of the potential

Wistd =
1

Dt2i−1E
t

t+Dt

dt8St +
1

2
Dt − t8Di−1

Vst8ddt8 s8d

and a modified integralW̃1 defined as in Eq.(4). Then, these
integrals can be approximated in a way consistent with the

expected accuracy. In Ref.[11], we proposed to approximate
the integralsW1 andW2 with the Simpson formula[3] as

W1std =
1

6
FVstd + 4VSt +

1

2
DtD + Vst + DtdG + OsDt4d

s9d

and

W2std =
1

12Dt
fVstd − Vst + Dtdg + OsDt2d. s10d

As in Eq.(3), it only requires three evaluations of the poten-
tial. This number can be reduced to 2 with a two-point Gauss
quadrature formula[3],

W1std =
1

2
FVSt +

3 −Î3

6
DtD + VSt +

3 +Î3

6
DtDG + OsDt4d

s11d

and

W2std =
Î3

12Dt
FVSt +

3 −Î3

6
DtD − VSt +

3 +Î3

6
DtDG

+ OsDt2d. s12d

This gain is, however, only apparent when the process is
iterated, since the first exponential in Eq.(7) can be grouped
with the last exponential of the next iteration. However, this
variant appears to be slightly more precise in the examples of
Sec. IV.

III. AN APPROXIMATION AT ORDER 6

We have tried to generalize the Magnus approach up to
order 6, but we could only achieve it in particular cases.
Some commutators appearing in integrals of the Magnus ex-
pansion, such as[fH0,Vst8dg ,fH0,Vst9dg] could not be disen-
tangled in factorized exponentials depending either onH0 or
on V. These terms vanish in the examples considered below,
but do not in more general cases. So, we turned to the Suzuki
approach using time-ordered exponentials[9] applied by
Chin and Chen at order 4[10]. It allows transforming a de-
composition at a given order for time-independent potentials
in a decomposition valid for time-dependent potentials.

Following Ref.[9], the evolution operator can be written
for time-dependent potentials as

Ust + Dt,td = e−iDtfHstd+iDg = e−iDtfsH0+iDd+Vstdg, s13d

whereD is the forward time derivative operator

D =
]Q

] t
. s14d

This operator possesses the property,

FstdeDtDGstd = Fst + DtdGstd, s15d

i.e., it translates in time the operators located at its left.
Property (15) allows deriving an approximation of the

evolution operator in the following way. A decomposition of
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expf−iDtsA+Bdg with A=H0+ iD and B=Vstd is chosen at
some order and applied to Eq.(13). The commutation prop-
erty fH0,Dg=0 implies

e−iDtsH0+iDd = e−iDtH0eDtD. s16d

Double commutators of type[Vstd ,fH0+ iD ,Vstdg] appear
beyond second order. These commutators are simplified by
using the commutation property[10]

†Vstd,fD,Vstdg‡ = 0 s17d

and the gradient expression[19,14]

†Vstd,fH0,Vstdg‡ =
1

m
f¹Vstdg2. s18d

Then, relation(15) is employed. With a fourth-order decom-
position, this procedure leads to Eq.(3) [10].

Let us apply this procedure to the optimal decomposition
at sixth order of expf−iDtsA+Bdg presented in Eq.(50) of
Ref. [14]. It is optimal in the sense that the authors of Ref.
[14] have selected it among various possibilities to minimize
the error. The above procedure leads to

Ust + Dt,td

= e−iDt0H0e−iv0DtṼ0st+Dt−Dt0de−iDt1H0e−iv1DtVst+Dt−Dt1−Dt0d

3e−iDt2H0e−iv2DtṼ2ft+s1/2dDtge−iDt2H0e−iv1DtVst+Dt1+Dt0d

3e−iDt1H0e−iv0DtṼ0st+Dt0de−iDt0H0 + OsDt7d, s19d

with Ṽi defined in Eq.(4). The coefficients of this decompo-
sition are

Dt0 = 0.109 705 972 394 868 2Dt,

Dt1 = 0.414 063 226 731 083 1Dt,

Dt2 =
1

2
Dt − Dt1 − Dt0,

v0 = 0.269 331 584 893 530 1,

v1 = 1.131 980 348 651 556,v2 = 1 − 2sv0 + v1d,

d0 = 0.003 208 744 099 999 45,

d2 = 0.007 348 391 794 869 08. s20d

Notice that, in quantum-mechanical applications, all coeffi-
cientsDti or vi in exponential operators of the chosen decom-
position need not be positive to ensure a good accuracy.

Decomposition(19) involves six exponentials ofH0 and
is, in this respect, not the most economical at sixth order in
Ref. [14]. Indeed factorization(45) of that reference leads to
an approximation of the evolution operator containing only
four exponentials ofH0. However, we have observed that the
corresponding algorithm provides results that are less accu-
rate by about two orders of magnitude. Moreover, it involves
evaluations of the potential outside the intervalft ,t+Dtg.

This may raise numerical problems in the first and last time
intervals when there is no obvious way of extrapolating the
potential before the initial time or after the final time. That
decomposition is therefore not competitive with decomposi-
tion (19) and will not be further considered here. In the ex-
amples below, we however discuss another decomposition at
order 6, involving more exponentials but without gradient
terms.

The first and last exponentials in Eq.(19) can be grouped
in the iteration so that the average number of exponentials of
H0 per time step is only five. This number should be com-
pared with the two exponentials in Eqs.(3) and (7) or four
exponentials in Eq.(5) at fourth order and with the single
exponential at second order. We associate with these decom-
positions an integern taking the values 5, 2, 4, and 1,
respectively.

IV. APPLICATION TO SIMPLE ONE-DIMENSIONAL
SYSTEMS

In order to appreciate the efficiency of the sixth-order
algorithm, we compare the different approximations(2), (3),
(5), (7), and(19) on two one-dimensional quantum problems.
The forced harmonic oscillator can be solved analytically
[16,17]. The Walker-Preston model[18] represents a di-
atomic molecule in a time-dependent electric field and has
been studied in Ref.[10]. In a first step, we only compare the
accuracies of the algorithms. We check that a sixth-order
accuracy is really obtained and discuss the improvement
with respect to lower orders. In a second step, we address the
utility of the algorithms by comparing their efficiencies, i.e.,
by taking account the fact that the computer time involved in
a single time step differs at the various orders.

The one-dimensional time-dependent Hamiltonian reads

H = −
1

2m

]2

] x2 + V0sxd − fstdx. s21d

The first two terms are interpreted as operatorH0. The last
term is the time-dependent potentialVstd. A different separa-
tion is also briefly discussed below. The wave function
csx,td is represented on a mesh in the spirit of the Lagrange-
mesh[5] or discrete-variable[4] methods. Following the dis-
cussion in Ref.[11], we select a sinc mesh[20,21], which is
based on equally spaced mesh pointsxj =x1+s j −1dh, where
x1 andh are scaling parameters andj varies from 1 toN. All
potential terms are represented by diagonal matrices evalu-
ated at mesh points. The Hamiltonian operatorH0 is repre-
sented by matrix elements

H0i j = Hm−1s− 1di−jsxi − xjd−2 si Þ jd,

m−1h−2p2/6 + V0sxid si = jd,
s22d

wherei and j vary from 1 toN. The time-dependent potential
is represented at the Gauss approximation related with sinc
functions[21] as

Vijstd = − xi fstddi j . s23d

The mesh covers an intervalfx1,xNg outside of which wave
functions are negligible. The numberN of mesh points is
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taken large enough so that the results are stable ifN is in-
creased. The exponentials of the diagonal potential matrices
are very easy to calculate in all cases. The exponentials of
the full H0 matrices are obtained through a diagonalization
which must be performed only once, before the iteration
starts. In contrast with the second- and fourth-order algo-
rithms (3) and(7), three such matrices must be stored in the
sixth-order algorithm. Another approach, using Padé ap-
proximations, has been tested in Ref.[11]. It led to a signifi-
cant loss of accuracy. At sixth order, a(3,3) Padé approxi-
mation consistent with the accuracy of the algorithm should
be used. Since the kinetic-energy matrix is full, it would not
reduce the computing times.

For the forced oscillator,H0 is the harmonic-oscillator
Hamiltonian with m=1 and V0sxd=s1/2dx2. Its eigenfunc-
tions are denoted aswnsxd and the corresponding energies as
En. The general solution of the time-dependent Schrödinger
equation for the initial wave packetcsx,0d=wnsxd at t=0 is
given by [16,17]

csx,td = wnfx − x0stdgexpfip0stdxgexp

3H− iE
0

t

fEn + L0st8dgdt8J , s24d

where x0std and p0std are the classical coordinate and mo-
mentum corresponding toH with initial conditionsx0s0d=0
and p0s0d=0, respectively. The Lagrangian-like expression
L0=s1/2dẋ0

2−s1/2dx0
2 appears in the phase factor. For the

time-dependent potential, we consider two cases which allow
a fully analytical treatment. As in Ref.[11], we consider a
trigonometric pulse. However, for simplicity, we now define
it as

f1std = sin21

2
pt, 0 , t , 2, s25d

i.e., we eliminate the two periods withVstd=0 before and
after the pulse considered in Ref.[11]. A second time-
dependent term is the oscillating field

f2std = sin vt, s26d

with v=0.75. The corresponding explicit expressions ofx0std
ande0

t L0st8ddt8 are given in the Appendix. In both cases, the
system is att=0 in the ground state of the harmonic
oscillator.

For the pulse, the interval isf−8, +8g with N=50. The
pulse increases untilt=1 and then decreases untilt=2, where
we analyze the accuracy of the final wave function by com-
parison with the exact result. The final error with respect to
the exact calculation is given by the quadratic-norm distance,

« = icapprox.std − cexactstdi s27d

at the endt=2 of the pulse(25). In Fig. 1, the final errore is
plotted as a function of the time stepDt for different factor-
izations of the evolution operator.

We can distinguish three different behaviors, as expected.
At the second-order approximation(2) with a=1/2 (open
triangles), the error displays a slope typical ofDt2 since the
number of time steps is proportional to 1/Dt. In Fig. 2 of

Ref. [11], the slope corresponds toDt3, because the average
error per time step is represented. At fourth order, the errors
of the different approximations display a slopeDt4. Approxi-
mation(7) with the Simpson quadratures(9) and(10) is less
accurate than Chin and Chen’s algorithm(3) or factorization
(7) with the Gauss quadratures(11) and (12), which are al-
most equivalent. Algorithm(5) is, however, much more ac-
curate. At sixth order(crosses), the error clearly decreases as
Dt6 down to the computer accuracy. It is remarkable that
with only two stepssDt=1d, the accuracy is better than 0.1%
with the sixth-order approximation. We also made the calcu-
lation at sixth order withH0 equal to the kinetic energyT
while Vstd is s1/2dx2− fstdx. This case is more general be-
cause the gradient terms(4) still depend onx. The results
would display no visible difference with respect to Fig. 1. We
also test the best gradient-free algorithm(82) and (83) of
Ref. [15]. The obtained results(pluses) are slightly less good.

For the oscillating field, we choose the spatial interval
f−12, +12g with N=75. The natural time unit is the oscilla-
tion periodt=2p /v. In this case, we calculate the error(27)
on the evolution att=1000t. In Fig. 2, we display results for
the oscillating potential(25).

The conclusions are essentially the same as with the
pulse. Chin and Chen’s approximation is more accurate than
the other fourth-order approximations with the same number
of exponentials ofH0, but less good than algorithm(5). Due
to the large number of time steps, fourth-order approxima-
tions with time steps around 0.001 present a saturation re-
lated to the computer accuracy.

FIG. 1. Accuraciese in different approximations of the time
evolution operator as a function of the time stepDt for the harmonic
oscillator forced by pulse(25). Second-order factorization(2), open
triangles. Fourth-order factorizations(7) with Simpson integration,
full triangles; (7) with Gauss integration, full circles;(3) full
squares; and(5) full diamonds. Sixth-order factorization(19),
crosses, and gradient-free factorization(see text), pluses.
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The Walker-Preston model[18] is defined by Hamiltonian
(21) written as

H = −
1

2m

]2

] x2 + V0s1 − e−axd2 + Ax cosvt, s28d

where m=1745, V0=0.2251,a=1.1741,A=0.011025, and
v=0.01787[10]. The first two terms represent the standard
Morse HamiltonianH0 and the last term is the oscillating
potential Vstd. The wave function is represented on a sinc
mesh in the intervalf−0.8, +4.24g with N=80. The initial
wave function is chosen to be the ground state of the time-
independent HamiltonianH0. As in the previous case, the
oscillation period ist=2p /v. The final error att=1000t is
given by

e = icapprox.std − cconv.stdi, s29d

wherecconv.std is a “converged” wave function obtained at
sixth order with small time stepssDtø0.015td. Different
approximations of the evolution operator are compared in
Fig. 3.

The same behaviors as in the solvable examples are ob-
served. The slopes are about 2 at second order(open tri-
angles), 4 at fourth order(full triangles, full circles, full
squares, full diamonds), and 6 at sixth order(crosses,
pluses). Again, Chin and Chen’s approximation is the best
fourth-order algorithm with only two exponentials involving

H0. It seems that it better resists to long-time oscillating
fields than the others. The sixth-order algorithm(19) is the
most accurate for all time steps.

Since the three examples give consistent information, we
discuss the algorithm efficiency in the last case only. In order
to compare the computation times of the different approxi-
mations, we must take into account the propagation cost of
all exponential operators in each factorization. This is esti-
mated with the following assumption: we neglect the com-
puting time of the exponentials of the diagonal matrices rep-
resenting Vstd. This means that the evaluation of this
potential at mesh points is considered as negligible. If the
potential evaluations were not negligible, the discussion be-
low remains valid if the evaluation time of a pair of two
successive exponentials[one with Vstd and one withH0] is
approximately constant. This cannot strictly be true because
of the gradient terms. Notice that the present assumptions are
quite different from those for classical cases in Ref.[15], so
that different conclusions can be expected.

Let n be the average number of exponentials of fullH0
matrices at each time step defined in Sec. II. From Eqs.(2),
(3), (7), (5), and(19), n is equal to 1 at second order, 2 or 4
at fourth order, and 5 at sixth order. The gradient-free sixth-
order algorithm defined by Eqs.(82) and (83) of Ref. [15]
corresponds ton=7. In Fig. 4, the total error(29) after the
evolution is plotted as a function ofDt /nt, i.e., an effective
time stepDt /n in t units.

FIG. 2. Accuraciese for the harmonic oscillator forced by os-
cillating field (26). Second-order factorization(2), open triangles.
Fourth-order factorizations(7) with Simpson integration, full tri-
angles;(7) with Gauss integration, full circles;(3) full squares; and
(5) full diamonds. Sixth-order factorization(19), crosses, and
gradient-free factorization(see text), pluses.

FIG. 3. Accuraciese for the Walker-Preston model. Second-
order factorization(2), open triangles. Fourth-order factorizations
(7) with Simpson integration, full triangles;(7) with Gauss integra-
tion, full circles;(3) full squares; and(5) full diamonds. Sixth-order
factorization(19), crosses, and gradient-free factorization(see text),
pluses.
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Among the fourth-order algorithms, the simpler algorithm
(3) of Chin and Chen becomes competitive with the more
complicate algorithm(5). At low accuracy, the sixth-order
approximations require more computation time than fourth-
order approximations(3) and (5). But at high accuracy, the
sixth-order factorizations become faster than all others. How-
ever, because of its high numbern, the gradient-free algo-
rithm is not competitive. The discussion of the quantum case
appears to be quite different from the discussion of the clas-
sical case in Ref.[15].

V. CONCLUSION

In this work, we present and discuss a sixth-order algo-
rithm based on the method proposed by Suzuki[9] and on a
recent factorization of the exponential of a sum of operators
derived in Ref.[14]. Our algorithm of Ref.[11] could not,
until now, be extended to sixth order except in the particular
case where the gradient term is a constant. Anyway, at fourth
order, it is less efficient in the studied examples than the
algorithms of Chin and Chen[10] and of Omelyan, Mryglod,
and Folk[15], based on the Suzuki procedure. For all time
steps, the sixth-order algorithm provides the best accuracy.

Since our main goal is to find the most efficient algorithm
for solving time-dependent Schrödinger equations, we esti-
mate the relative efficiency of the algorithms by dividing
each time step by a computing-time cost approximated by an
integern. When the required accuracy is not large, fourth-
order algorithms and in particular, the simple algorithm of

Chin and Chen are the most efficient ones. The sixth-order
algorithms are unfavored by the large number of exponen-
tials in approximate factorizations of the evolution operator.
However, if a high accuracy is required, the presented sixth-
order algorithm(19) becomes the most efficient in our tests
and might remain optimal with respect to upper orders.

The efficiency of the different algorithms depends on a
subtle balance of accuracy and cost. The definition of effi-
ciency depends on the type of calculation and is quite differ-
ent for quantal and classical applications. It might also
change in calculations more complex than the simple ex-
amples discussed here. Anyway, it might be interesting to
systematically explore the possible algorithms starting from
the classification in Ref.[15].
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APPENDIX

For the pulse defined in Eq.(25), the classical coordinate
is given for 0ø tø2 by

x0std = 2Ksp2cos t − cosptd +
1

2
, sA1d

with K=1/f4s1−p2dg. The integral of the Lagrangian reads

E
0

t

L0st8ddt8 = − K2S1 + p2

2p
sin 2pt + p4sin 2t

− 4p2sin t cosptD
+ KS 1

p
sin pt − p2sin t −

t

4
D −

t

8
. sA2d

For the oscillating field defined in Eq.(26), the classical
coordinate is given by

x0std =
1

1 − v2ssin vt − v sin td. sA3d

The integral of the Lagrangian reads

E
0

t

L0st8ddt8 =
1

4s1 − v2d2Sv2sin 2t +
v2 + 1

2v
sin 2vt

+ sv2 − 1dt − 4v sin vt cos tD . sA4d

In both cases, the initial conditions arex0s0d=0 andp0s0d
=0 and the classical momentum is given byp0std= ẋ0std.

FIG. 4. Accuraciese as a function of the effective time step
Dt /n (in t units) for the Walker-Preston model. Second-order fac-
torization (2), open triangles. Fourth-order factorizations(7) with
Simpson integration, full triangles;(7) with Gauss integration, full
circles; (3) full squares; and(5) full diamonds. Sixth-order factor-
ization (19), crosses, and gradient-free factorization(see text),
pluses.
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